Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Vaccines (Basel) ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2279716

ABSTRACT

With the coexistence of multiple lineages and increased international travel, recombination and gene flow are likely to become increasingly important in the adaptive evolution of SARS-CoV-2. These processes could result in genetic introgression and the incipient parallel evolution of multiple recombinant lineages. However, identifying recombinant lineages is challenging, and the true extent of recombinant evolution in SARS-CoV-2 may be underestimated. This study describes the first SARS-CoV-2 Deltacron recombinant case identified in Brazil. We demonstrate that the recombination breakpoint is at the beginning of the Spike gene. The 5' genome portion (circa 22 kb) resembles the AY.101 (Delta), and the 3' genome portion (circa 8 kb nucleotides) is most similar to the BA.1.1 (Omicron). Furthermore, evolutionary genomic analyses indicate that the new strain emerged after a single recombination event between lineages of diverse geographical locations in December 2021 in South Brazil. This Deltacron, AYBA-RS, is one of the dozens of recombinants described in 2022. The submission of only four sequences in the GISAID database suggests that this lineage had a minor epidemiological impact. However, the recent emergence of this and other Deltacron recombinant lineages (XD, XF, and XS) suggests that gene flow and recombination may play an increasingly important role in the COVID-19 pandemic. We explain the evolutionary and population genetic theory that supports this assertion, concluding that this stresses the need for continued genomic surveillance. This monitoring is vital for countries where multiple variants are present, as well as for countries that receive significant inbound international travel.

2.
Arch Virol ; 168(1): 19, 2023 Jan 03.
Article in English | MEDLINE | ID: covidwho-2174216

ABSTRACT

Cases of reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported worldwide. We investigated reinfection cases in a set of more than 30,000 samples, and the SARS-CoV-2 genomes from selected samples from four patients with at least two positive diagnoses with an interval ≥ 45 days between tests were sequenced and analyzed. Comparative genomic and phylogenetic analysis confirmed three reinfection cases and suggested that the fourth one was caused by a virus of the same lineage. Viral sequencing is crucial for understanding the natural course of reinfections and for planning public health strategies for management of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reinfection , Brazil/epidemiology , Phylogeny , Genomics
3.
Int Immunopharmacol ; 108: 108697, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1739816

ABSTRACT

Monocytes play a major role in the initial innate immune response to SARS-CoV-2. Although viral load may correlate with several clinical outcomes in COVID-19, much less is known regarding their impact on innate immune phenotype. We evaluated the monocyte phenotype and mitochondrial function in severe COVID-19 patients (n = 22) with different viral burden (determined by the median of viral load of the patients) at hospital admission. Severe COVID-19 patients presented lower frequency of CD14 + CD16- classical monocytes and CD39 expression on CD14 + monocytes, and higher frequency of CD14 + CD16 + intermediate and CD14-CD16 + nonclassical monocytes as compared to healthy controls independently of viral load. COVID-19 patients with high viral load exhibited increased GM-CSF, PGE-2 and lower IFN-α as compared to severe COVID-19 patients with low viral load (p < 0.05). CD14 + monocytes of COVID-19 patients with high viral load presented higher expression of PD-1 but lower HLA-DR on the cell surface than severe COVID-19 patients with low viral load. All COVID-19 patients presented decreased monocyte mitochondria membrane polarization, but high SARS-CoV-2 viral load was associated with increased mitochondrial reactive oxygen species. In this sense, higher viral load induces mitochondrial reactive oxygen species generation associated with exhaustion profile in CD14 + monocytes of severe COVID-19 patients. Altogether, these data shed light on new pathological mechanisms involving SARS-CoV-2 viral load on monocyte activation and mitochondrial function, which were associated with COVID-19 severity.


Subject(s)
COVID-19 , Monocytes , Biomarkers/metabolism , Humans , Lipopolysaccharide Receptors/metabolism , Mitochondria/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Receptors, IgG/metabolism , SARS-CoV-2 , Viral Load
4.
Mem Inst Oswaldo Cruz ; 116: e210237, 2022.
Article in English | MEDLINE | ID: covidwho-1674096

ABSTRACT

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target genes by molecular methods has been chosen as the main approach to identify individuals with Coronavirus disease 2019 (COVID-19) infection. OBJECTIVES: In this study, we developed an open-source RNA standard-based real-time quantitative RT-PCR (RT-qPCR) assay for quantitative diagnostics of SARS-CoV-2 from nasopharynx, oropharynx, saliva and plasma samples. METHODS AND FINDINGS: We evaluated three SARS-CoV-2 target genes and selected the RNA-dependent RNA polymerase (RdRp) gene, given its better performance. To improve the efficiency of the assay, a primer gradient containing 25 primers forward and reverse concentration combinations was performed. The forward and reverse primer pairs with 400 nM and 500 nM concentrations, respectively, showed the highest sensitivity. The LOD95% was ~60 copies per reaction. From the four biological matrices tested, none of them interfered with the viral load measurement. Comparison with the AllplexTM 2019-nCoV assay (Seegene) demonstrated that our test presents 90% sensitivity and 100% specificity. MAIN CONCLUSIONS: We developed an efficient molecular method able to measure absolute SARS-CoV-2 viral load with high replicability, sensitivity and specificity in different clinical samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Viral Load
5.
Emerg Microbes Infect ; 10(1): 1431-1440, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1286519

ABSTRACT

In this study, we analyzed 340 whole genomes of SARS-CoV-2, which were sampled between April and November 2020 in 33 cities of Rio Grande do Sul, South Brazil. We demonstrated the circulation of two novel emergent lineages, VUI-NP13L and VUI-NP13L-like, and five major lineages that had already been assigned (B.1.1.33, B.1.1.28, P.2, B.1.91, B.1.195). P.2 and VUI-NP13L demonstrated a massive spread in October 2020. Constant and consistent genomic surveillance is crucial to identify newly emerging SARS-CoV-2 lineages in Brazil and to guide decision making in the Brazilian Public Healthcare System.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Brazil/epidemiology , COVID-19/epidemiology , Genetic Variation , Genome, Viral , Humans , Phylogeny , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL